Neumáticos. La física de la adherencia.

Los principales mecanismos físicos por los que un neumático proporciona su capacidad de adherencia con el suelo son dos: adhesión e histéresis. Ambos son descritos a continuación para el caso de una pieza cualquiera de caucho apoyada sobre una superficie rugosa.




Por adhesión se denomina al fenómeno por el que los átomos de dos cuerpos en contacto, sean rígidos o no, desarrollan una pequeña fuerza electromagnética de atracción mutua. La resistencia a la ruptura de estas fuerzas provoca la aparición de otras paralelas a la superficie de contacto, que se opondrán a cualquier movimiento relativo entre los dos cuerpos.

El segundo mecanismo por el que el neumático desarrolla su adherencia y que diferencia al caucho de otros muchos materiales es la histéresis. El fenómeno de histéresis está presente en el caucho por su comportamiento visco-elástico.



El deslizamiento de una pieza de este material sobre una irregularidad en la superficie de contacto provoca una deformación. Cuando esta ir regularidad se ha superado, el caucho tiende a recuperar su forma original y su contacto con la superficie pero, debido a la histéresis, no de manera inmediata.

Este desfase entre causa (presión o tensión aplicad a) y efecto (deformación) hace que el neumático apoyado sobre una superficie rugosa como es el asfalto «abrace» las irregularidades de manera asimétrica, más por delante de esa rugosidad que por detrás, en el sentido de la marcha. Esto genera una distribución de presiones orientada en sentido contrario al deslizamiento, lo que contribuye a la fuerza de fricción total.

A este fenómeno se debe que un neumático «blando» tenga mejor agarre que uno «duro», y que la mayor tracción se obtenga cuando la rueda está sufriendo un cierto deslizamiento.

El área de la superficie de contacto entre un neumático y el suelo queda definida en gran medida por la presión de inflado y el peso que recae sobre él, y no es por lo tanto responsable de la mayor adherencia que un neumático ancho puede proporcionar.

Sin embargo, cuanto mayor es la anchura de un neumático más ancha y corta es la huella. Como se verá al describir la resistencia a la rodadura, esto reduce la magnitud de la deformación que sufre el neumático en su contacto con el asfalto, lo que redunda en una distribución de presiones más homogénea y por lo tanto más propicia para desarrollar una mayor adherencia.

Esta menor deformación permite además el empleo de compuestos más blandos en neumáticos anchos. El grado de histéresis aceptable está limitado en última instancia por la generación de calor asociada a la deformación cíclica del caucho, que puede degradar las prestaciones del neumático y en última instancia destruirlo. La disminución en la generación de calor debida a las menores deformaciones que sufre un neumático ancho permite el empleo de compuestos más blandos, que proporcionen una mayor adherencia.
Sobre asfalto seco, un neumático de turismo tiene un coeficiente de rozamiento en torno a 0,8-1. Es decir, puede desarrollar una fuerza (lateral, longitudinal o combinada) ente el 80 y el 100 por ciento del peso que recae sobre él. Un neumático de competición puede fácilmente duplicar estos valores.

Una consecuencia negativa de la histéresis de un neumático es la resistencia a la rodadura. Al girar, sucesivas secciones del neumático son deformadas al entrar en contacto con el suelo pero no recuperan de forma inmediata su forma original, a consecuencia de la visco-elasticidad del caucho.

Este retardo provoca que buena parte de la energía empleada en su deformación no sea recuperada al volver a su forma original. Esto se traduce en una distribución de presiones desigual en la huella, más intensas en su parte delantera.

Esta distribución de presiones puede ser resumida e n una única fuerza resultante, que a efectos de análisis dinámico cause el mismo efecto sobre la rueda. Dicha fuerza tendrá una dirección vertical, y su punto de aplicación estará ligeramente desplazado por delante del eje vertical del neumático.

Como toda fuerza cuya dirección de aplicación no pase por el centro de rotación de un objeto, imprimirá al mismo un momento angular o par. En el caso del neumático, este par se opondrá a su rodadura, y deberá ser vencido por la energía proveniente del motor, incrementando por tanto el consumo de combustible y reduciendo la velocidad máxima.

La resistencia a la rodadura crece con la velocidad, pero de manera reducida siempre que no se sobrepase aquélla para la que el neumático ha sido diseñado. En tales circunstancias se puede cuantificar entre el 1 por ciento y 1,5 por ciento del peso que recae sobre ella. A velocidades reducidas como las alcanzadas en tráfico urbano su valor es netamente superior a la resistencia aerodinámica, que crece con el cuadrado de la velocidad. A las velocidades desarrolladas en carretera la resistencia aerodinámica es el factor dominante de la resistencia al avance.

La resistencia a la rodadura de un neumático no es propiamente una fricción. Una fuerza de fricción tiene dirección paralela a la superficie de contacto entre dos objetos; en el caso que nos ocupa, paralela al suelo. Por el contrario, la distribución de fuerzas responsable de la resistencia a la rodadura tienen una dirección normal al asfalto.

La histéresis tiene, por tanto, un efecto provechoso, la adherencia con el asfalto y uno negativo, la resistencia a la rodadura. En los denominados neumáticos ecológicos se emplean compuestos con una limitada histéresis, lo que reduce su resistencia a la rodadura pero, como contrapartida, también su adherencia.

Cuando un neumático rueda sobre asfalto seco, el contacto entre la banda de rodadura y el pavimento se produce en toda la superficie de la huella.

Cuando lo hace sobre asfalto lo suficientemente mojado como para que exista una película de agua sobre él, es necesario que los canales tallados sobre el neumático evacuen el agua hacia los laterales. Pero esto no es un proceso instantáneo ni que se produzca de manera homogénea a lo largo de la huella. Es posible distinguir así tres distintas zonas, caracterizadas por la cantidad de agua que se ha logrado evacuar:

La primera de ellas se encuentra en el frontal de la huella, donde el neumático acaba de entrar en contacto con la película de agua y por tanto el volumen de agua evacuado es muy reducido. El espesor es todavía lo suficientemente grande como para que no se produzca contacto alguno entre la rueda y el asfalto, por lo que la adherencia proporcionada por esta zona es prácticamente nula.

En la segunda zona el espesor de la película de agua se ha reducido lo suficiente como para que se inicie un leve contacto entre las irregularidades más prominentes del asfalto y la superficie de la banda de rodadura. Se empieza a generar fricción, pero muy lejos de los valores que proporcionaría un contacto sobre asfalto seco.

Finalmente, si la capacidad de evacuación de agua es suficiente, en la última zona de la huella se logrará un contacto franco, proporcionando un agarre cercano al que se daría sobre asfalto seco.